
13 Matrices

The following notes came from Foundation mathematics (MATH123).

Although matrices are not part of what would normally be considered “foundation

mathematics”, they are one of the first topics you will need in first year science and

economics units. This topic is a quick introduction to matrices emphasising matrix multi-

plication and inverses.

A matrix is a rectangular array of numbers arranged in rows and columns. It is usual

to enclose the array in brackets. An example of a matrix is

P =


1.918 1.831

3.654 3.528

1.470 1.457

0.642 0.889

 .

We often need to refer to the rows or columns of a matrix.
1.918 1.831

3.654 3.528

1.470 1.457

0.642 0.889


←− row 1

←− row 2

←− row 3

←− row 4

↑ ↑
col. 1 col. 2

We say that a matrix is an m × n matrix, or has size m × n if it has m rows and

n columns. For example, the matrix P above is a 4 × 2 matrix, the matrix A below is a

3× 4 matrix.

A =


1 3 −5 7

0 −1 2 0

1 0 −9 −2

 .

A specific element of a matrix is named by specifying its row and column. Thus the

(2, 3) element or component of a matrix is the number in the 2nd row and 3rd column, in

the matrix A above the (2, 3) element is 2. The components of a matrix are distinguished

by subscripts — because a matrix is a two dimensional array we need two subscripts to

specify a component of a matrix. Thus we refer to the (2, 3) element of a matrix A as A2 3.

In the matrix A above we have, for example:

A1 2 = 3 and A3 4 = −2.
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Remember that the first index refers to the row, the second index to the column.

With this notation a general m× n matrix A has the form:

A =


A1 1 A1 2 . . . A1 n

A2 1 A2 2 . . . A2 n

...
...

. . .
...

Am 1 Am 2 . . . Am n

 .

A n × 1 matrix, that is a matrix with n rows and one column, is called a column

vector. For example

X =


X1

X2

...

Xn


A 1 × n matrix, that is a matrix with 1 row and n columns, is called a row vector. For

example

X =
[

X1 X2 . . . Xn

]
Note that column and row vectors need only one index to label their components.

13.1 Addition and subtraction of matrices

Addition and subtraction of matrices is done by adding or subtracting corresponding com-

ponents. It can only be done when the matrices are the same size. Let

A =


1 0 3

2 −1 6

3 1 0

 , B =


0 −3 −1

1 2 3

−1 −1 0

 .

Then

A + B =


1 + 0 0− 3 3− 1

2 + 1 −1 + 2 6 + 3

3− 1 1− 1 0 + 0

 =


1 −3 2

3 1 9

2 0 0


and

A−B =


1− 0 0− (−3) 3− (−1)

2− 1 −1− 2 6− 3

3− (−1) 1− (−1) 0− 0

 =


1 3 4

1 −3 3

4 2 0

 .
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Example

Suppose numbers of three species of kangaroo are counted in three different areas over a

period. Initially the numbers are represented in a matrix P:

P =

species

1 2 3
460

830

670

54

42

63

210

365

288


1

2

3

area

A matrix B (which gives the number of births during the period), and a matrix D (which

gives the number of deaths during the period) are given by:

B =


42 6 30

88 7 43

72 6 22

 , D =


24 3 22

103 12 83

32 4 16

 .

To find the change in population for each species in each area, it is natural to subtract

the entries in D from the corresponding entries in B (since population change = births −
deaths). We obtain

B−D =


18 3 8

−15 −5 −40

40 2 6

 .

(This tells us, for instance, that in area 1 the 3rd kangaroo species increased by 8. The

fact that the numbers in the 2nd row are all negative means that in area 2 all species of

kangaroo suffered a decline in number.) To find the total numbers of kangaroos of each

species in each area at the end of the period, it is natural to add the entries of P to the

corresponding entries of B−D. We obtain

P + (B−D) =


478 57 218

815 37 325

710 65 294

 .

Thus, for example, there are 710 of species 1 in area 3 at the end of the experimental

period.
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13.2 Multiplication of a matrix by a number

Each component of the matrix is multiplied by the number. If A is the matrix above, then

2×A = 2×


1 0 3

2 −1 6

3 1 0

 =


2× 1 2× 0 2× 3

2× 2 2×−1 2× 6

2× 3 2× 1 2× 0

 =


2 0 6

4 −2 12

6 2 0

 .

Multiplication of a matrix by a number is called scalar multiplication.

13.3 Sigma Notation

Sigma notation is used as a shorthand way of writing sums. If a vector X (either a row or

column vector) has N components, then∑
Xi stands for X1 + X2 + X3 + · · ·+ XN .

Alternative notations ∑
Xi =

∑
i

Xi =
N∑

i=1

Xi

are used when we want to be explicit about the index over which the summation is per-

formed or the number of elements of the vector.

If X is the column vector

X =



1

2

3

4

5


then ∑

Xi = 1 + 2 + 3 + 4 + 5 = 15

.

13.4 Products of Vectors

We will look at multiplication of general matrices in the next section. Here we examine

the simple case of the product of a row vector and a column vector.
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Given a row vector X and a column vector Y each with the same number of components,

their product is

X×Y =
∑

XiYi,

or

X×Y = X1Y1 + X2Y2 + · · ·+ XnYn.

If

X =
[

1 3 7
]

and Y =


3

−4

2


then

X×Y = X1Y1 + X2Y2 + X3Y3

= (X1 × Y1) + (X2 × Y2) + (X3 × Y3)

= (1× 3) + (3×−4) + (7× 2)

= 3− 12 + 14

= 5

Note that this definition only makes sense if the two vectors have the same number of

components.

13.5 Matrix Multiplication

A steelworks uses the raw materials hematite, dolomite and coking coal to produce cast

iron, iron and steel. The amounts of raw materials required for each product are given in

following table.

cast iron iron steel

hematite 3 3 3

dolomite 1 1 1.5

coking coal 10 14 19

All the quantities above are measured in tonnes; for example, to produce one tonne of iron

requires 3 tonnes of hematite, 1 tonne of dolomite and 14 tonnes of coking coal. The data
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in the table can be arranged as a 3× 3 matrix:

Q =


3 3 3

1 1 1.5

10 14 19


Now suppose the steelworks produces the following quantities of steel products.

July August

cast iron 900 1100

iron 1200 1500

steel 650 750

This data can be arranged as a 3× 2 matrix

P =


900 1100

1200 1500

650 750


We want to know what quantities of raw materials to order each month; that is, we want

to fill in the following table.

July August

hematite ? ?

dolomite ? ?

coking coal ? ?

The unknown numbers form a 3 × 2 matrix R whose components can be worked out like

this:

hematite required in July = hematite required to produce one tonne of cast iron

× tonnes of cast iron produced in July

+ hematite required to produce one tonne of iron

× tonnes of iron produced in July

+ hematite required to produce one tonne of steel

× tonnes of steel produced in July

= 3× 900 + 3× 1200 + 3× 650

= 8250.
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Similar calculations for the other components of R give

R =


3× 900 + 3× 1200 + 3× 650 3× 1100 + 3× 1500 + 3× 750

1× 900 + 1× 1200 + 1.5× 650 1× 1100 + 1× 1500 + 1.5× 750

10× 900 + 14× 1200 + 19× 650 10× 1100 + 14× 1500 + 19× 750



=


2700 + 3600 + 1950 3300 + 4500 + 2250

900 + 1200 + 975 1100 + 1500 + 1125

9000 + 16800 + 12350 11000 + 21000 + 14250



=


8250 10050

3075 3725

38150 46250

 .

So, for example, 3075 tonnes of dolomite are required in July and 46250 tonnes of coking

coal in August.

You can see from this calculation that the components of R are obtained from the

components of Q and P as follows:
R11 R12

R21 R22

R31 R32

 =


Q11P11 + Q12P21 + Q13P31 Q11P12 + Q12P22 + Q13P32

Q21P11 + Q22P21 + Q23P31 Q21P12 + Q22P22 + Q23P32

Q31P11 + Q32P21 + Q33P31 Q31P12 + Q32P22 + Q33P32

 .

We write

R = QP,

the product of the matrices Q and P.

The value of R31 can be written in sigma notation like this:

R31 =
∑

k

Q3kPk1.

In general

Rij =
∑

k

QikPkj

= Qi1P1j + Qi2P2j + Qi3P3j,

where i can be 1, 2 or 3 and j can be 1 or 2.

The product of two matrices A and B is defined like this in the general case:

Suppose A is an m×n matrix and B is an n×p matrix. Then A has m rows each of length
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n and B has p columns each of length n. Since the rows of A have the same dimension as

the columns of B it is possible to form the product of any row of A with any column of

B. Now the product AB is the m× p matrix C whose (i, j) component is the product of

ith row of A with jth column of B, thus

Cij =
∑

k

AikBkj.

Another way to look at the same thing is as follows: to find the element Cij run across

the ith row of A and down the jth column of B multiplying and adding as you go

C = A × B

jth jth

column column

↓

ith row →


...

· · · × · · ·
...

 = ith row

 → → →

 ×


↓
↓
↓


You perform this operation systematically, starting with the top lefthand element C11

which is computed from the first row of A and the first column of B. Then compute C12

which is obtained from the first row of A and the second column of B. Continue computing

the first row of the product C by running across the first row of A and down successive

columns of B. Once the first row of the product is completed, start on the second row. The

first element of this row C21 is computed from the second row of A and the first column of

B. The rest of the second row of the product is found by sticking with the second row of A

and running down successive columns of B. Continue in this way until the matrix product

is complete. Although this procedure may seem complicated, it becomes fairly easy with

enough practice.

When can matrices be multiplied?

To multiply A and B we form the products of the rows of A with columns of B. If A has

n columns then its rows have n components:

no. of components of a row of A = number of columns of A.
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Similarly

no. of components of a column of B = number of rows of B.

Since we can form the product of two vectors only if they have the same dimension

the product AB can be formed only if

number of columns of A = number of rows of B.

The fact that not all pairs of matrices can be multiplied fits in with similar facts we

already know:

• Two vectors can be added or subtracted only if they have the same dimension.

• The product of two vectors can be formed only if they have the same number of

components.

• Two matrices can be added or subtracted only if they are the same size.

The order of matrix multiplication can’t be changed

Suppose that the number of columns of A is the same as the number of rows of B, so that

the product AB can be formed. Usually BA 6= AB, so it is a mistake to change the order

of multiplication in a matrix calculation. Here are some of the things that can happen.

1. BA doesn’t exist.

Example

A =

[
1 0

1 −1

]
and B =

[
0 1 −1

2 3 0

]
.

AB =

[
1 0

1 −1

] [
0 1 −1

2 3 0

]

=

[
1× 0 + 0× 2 1× 1 + 0× 3 1× (−1) + 0× 0

1× 0 + (−1)× 2 1× 1 + (−1)× 3 1× (−1) + (−1)× 0

]

=

[
0 + 0 1 + 0 (−1) + 0

0 + (−2) 1 + (−3) (−1) + 0

]

=

[
0 1 −1

−2 −2 −1

]
.
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However the product BA is not defined since B has 3 columns but A has 2 rows,

and these numbers are not the same.

2. BA exists but is not the same size as AB.

Example

A =

[
0 1 −1

−2 0 1

]
and B =


1 1

−2 1

0 −1

 .

Then

AB =

[
0 1 −1

−2 0 1

] 
1 1

−2 1

0 −1


=

[
−2 2

−2 −3

]

while

BA =


1 1

−2 1

0 −1


[

0 1 −1

−2 0 1

]

=


−2 1 0

−2 −2 3

2 0 −1

 .

We see from this that AB and BA are not the same size (so can’t be equal) unless

A and B are “square” matrices of the same size.

3. AB and BA are the same size, but not equal.

Example

A =

[
1 1

2 0

]
and B =

[
0 1

1 2

]
.
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Then

AB =

[
1 1

2 0

] [
0 1

1 2

]

=

[
1× 0 + 1× 1 1× 1 + 1× 2

2× 0 + 0× 2 2× 1 + 0× 2

]

=

[
1 3

0 2

]

but

BA =

[
0 1

1 2

] [
1 1

2 0

]

=

[
0× 1 + 1× 2 0× 1 + 1× 0

1× 1 + 2× 2 1× 1 + 2× 0

]

=

[
2 0

5 1

]
.

Q. Why make matrix multiplication so hard? Why not just multiply component-by-

component as for adding and subtracting matrices?

A. If we defined matrix multiplication any other way it might be easier to work out but

it wouldn’t give the right answers to questions like our steelworks problem.

Multiplication of a matrix by a column vector

For example if

A =


0 1 2 3

2 3 4 5

3 4 5 6

 and X =


0

1

2

3


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we can calculate A ×X, since the number of columns of A is 4 which is the same as the

number of rows of X. The result is a column vector with 3 components.

A×X =


0 1 2 3

2 3 4 5

3 4 5 6

×


0

1

2

3



=


0× 0 + 1× 1 + 2× 2 + 3× 3

2× 0 + 3× 1 + 4× 2 + 5× 3

3× 0 + 4× 1 + 5× 2 + 6× 3



=


0 + 1 + 4 + 9

0 + 3 + 8 + 15

0 + 4 + 10 + 18



=


14

26

32

 .

In general if A is a m×n matrix and X is a n component column vector, then the column

vector Y = A×X has m components given by

Yi =
∑

j

Aij ×Xj.

If Y = A×X in the example above, for instance,

Y2 = A21 ×X1 + A22 ×X2 + A23 ×X3 + A24 × x4

= 2× 0 + 3× 1 + 4× 2 + 5× 3

= 26.
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13.6 The Identity Matrix

The n × n matrix with ones along the diagonal and zeroes everywhere else is called the

n× n identity matrix and denoted by I:

I =



1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


.

If I is the n× n identity matrix then

I×A = A

for every n × m matrix A. To see why this is so first notice that multiplying an n × n

matrix by an n×m matrix gives an n×m matrix, so I×A is an n×m matrix, the same

size as A. Now look at the (i, j) component of I×A, which is the product of the ith row

of I with the jth column of A. The ith row of I is is zero except for the ith component

which is 1, so the vectors in the inner product are

[
0 0 . . . 0 1 0 . . . 0 0

]
↑︷ ︸︸ ︷

ith component

and



A1j

A2j

...

Ai−1 j

Aij

Ai+1 j

...

0


.

The only non-zero term in the inner product is 1×Aij and therefore the (i, j) component

of I × A is Aij, which is also the (i, j) component of A. Doing this for every i and j

shows that every component of I ×A is the same as the corresponding component of A.

So I×A = A.

You can work out similarly that if I is the n × n identity matrix and B is an m × n

matrix then

B× I = B.
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So multiplication of any matrix by an identity matrix leaves the original matrix unchanged

(provided the matrices are the right sizes for the multiplication to be done).

A special case is when X is an n component columnvector and I is the n × n identity

matrix, then

I×X = X.

Another important special case is when A is a square n × n matrix and I is the n × n

identity matrix. In this case the products I×A and A× I are both defined and

I×A = A× I = A.

This is one of the few cases where changing the order does not change the product of the

matrices.

13.7 Inverse Matrices

We now know how to add, subtract and multiply matrices. It would be nice to be able to

divide them too. To divide numbers it is enough to be able to find 1/a for every number

a, because

b÷ a = b× (1/a).

For example, 5 ÷ 2 = 5 × 1/2 = 2.5. The number 1/a can also be written as a−1 and is

called the reciprocal or inverse of a. It satisfies

a−1 × a = 1.

The n × n matrix that behaves like the number 1 is the identity matrix I. So to divide

n× n matrices we need, for every n× n matrix A, an n× n inverse matrix A−1 with

A−1 ×A = I.

Because changing the order of matrix multiplication may make a difference we should also

ask for

A×A−1 = I

as a separate request.

Actually, not every number has a reciprocal — 0 doesn’t because the division 1/0 can’t

be done. With numbers 0 is the only exception, but there are many square matrices that

don’t have an inverse not just matrices with all their components 0. However, most square

matrices do have an inverse, so it is well worth finding out about inverses.
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The inverse of a 2× 2 matrix

Only for 2 × 2 matrices is it easy to tell whether there is an inverse and, if so, find it.

Inverses of square matrices of any size can be found by computer, however.

If

A =

[
a b

c d

]
is a 2× 2 matrix its determinant is the number

detA = ad− bc.

(We are using a, b, c and d here because they are easier to write than A11, A12, A21 and

A22. Sometimes detA is written as |A|.) A 2 × 2 matrix A does not have an inverse if

detA = 0, but if detA 6= 0 it does have an inverse and it is given by

A−1 =
1

ad− bc
×

[
d −b

−c a

]
.

This formula makes sense only when detA 6= 0 because otherwise the fraction 1/0 appears.

Let’s check that this is the inverse:

A−1 ×A =
1

ad− bc
×

[
d −b

−c a

]
×

[
a b

c d

]

=
1

ad− bc
×

[
d× a + (−b)× c d× b + (−b)× d

(−c)× a + a× c (−c)× b + a× d

]

=
1

ad− bc
×

[
ad− bc 0

0 ad− bc

]

=

[
1 0

0 1

]
= I

as required. You could also check that A ×A−1 = I, though, as before, working out the

product one way round is all that is necessary to check that we have the inverse of A.

Examples

Let

A =

[
−1 −1

2 2

]
and B =

[
1 2

1 4

]
.
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Then

detA = (−1)× 2− (−1)× 2 = 0

and

detB = 1× 4− 2× 1 = 2,

so B has an inverse but A does not. The inverse of B is

B−1 =
1

2
×

[
4 −2

−1 1

]

=

[
2 −1

−1/2 1/2

]
.

Exercises

Let A,B and C be the matrices

A =


1 2 3

0 −1 −3

−1 0 0

3 −3 −1

 B =


0 0 0

1 1 −3

3 2 −2

−4 0 −1

 C =


−3 −2 2

1 3 5

−2 −1 0

−1 −1 −2

 .

1. What size are these matrices?

2. Write down the components A12, A23 and A41.

3. Calculate A + B.

4. Calculate 2C.

5. Calculate A + B− 2C

6. Suppose

A =

[
2 −1 2 4

0 6 7 3

]
and C =

[
3 2 1 −2

4 7 −3 −2

]
and B is matrix such tat

A−B = C.

Find B

In a study of mosquito populations the following figures were obtained:
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eggs nos of wrigglers tumblers mosquitoes

1 2438 1104 358 210

Area 2 5068 2462 730 551

3 1438 982 412 289

A year later the numbers had changed to
3700 1813 428 236

6238 3115 789 608

1649 1319 438 309


Let A be the matrix containing the first set of data, and B the matrix containing

the second set of data.

7. What does the matrix B−A represent? Calculate B−A.

Let

A =

[
2 −1 0

0 3 1

]
B =

[
−1 2

1 −3

]
C =


3

−2

−1

 .

8. Write down the sizes of these three matrices.

9. Which of the matrix products A×A,A×B,A×C,B×A,B×B,B×C,C×A,C×B,

and C×C are defined?

10. Do all the matrix multiplications in Exercise 9 that are defined.

A manufacturer makes two types of products I and II, at two plants X and Y . In

the manufacturing process three types of pollutants – sulphur dioxide (S02), carbon

monoxide (CO), and particle matter – are produced. The quantity of pollutants

produced per day (in kg) in the manufacture of each product can be tabulated in a

matrix A:

A =

SO2 CO particle[
150

200

50

25

100

150

]
product I

product II

To satisfy government regulations, the pollutants must be removed. The cost in

dollars for removing each kg. of pollutant at each plant can be represented by the

matrix B:
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B =

plant plant

X Y
10

6

4

16

8

2


SO2

CO

particle

11. Calculate AB. What information does it contain?

Let A be the matrix

A =

[
1 −2

0 2

]
.

For any matrix A we define

A2 = A×A

A3 = A×A×A

on so on.

12. Find A2.

13. Find A3 and A4.

14. Find A−1.

15. There are two ways to interpret A−2:

(i) A−2 = (A−1)2 (the square of the inverse of A,

and

(ii) A−2 = (A2)−1 (the inverse of the square of A).

Check that these give the same answer.
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13.8 Answers to Exercises

1. All are 4× 3 matrices.

2. A12 = 2, A23 = −3 and A41 = 3.

3.

A + B =


1 2 3

1 0 −6

2 2 −2

−1 −3 −2


4.

2C =


−6 −4 4

2 6 10

−4 −2 0

−2 −2 −4


5.

A + B− 2C =


7 6 −1

1 −6 −16

6 4 −2

1 −1 2


6.

B = A−C =

[
−1 −3 1 6

−4 −2 10 5

]
7. B−A = the increase in mosquito populations over the year.

B−A =


1262 709 70 26

1170 653 59 57

211 337 26 20


8. A is 2× 3, B is 2× 2 and C is 3× 1.

9.The products A×C, B×A and B×B are defined.

10.

A×C =

[
8

−7

]

B×A =

[
−2 7 2

2 −10 −3

]
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B×B =

[
3 −8

−4 11

]
11.

AB =

[
2200 3000

2750 3700

]
this is the cost of removing pollutants from products at the plants. The rows correspond

to the products, the columns the plants.

12.

A2 =

[
1 −6

0 4

]
13.

A3 =

[
1 −14

0 8

]

A4 =

[
1 −30

0 16

]
14.

A−1 =

[
1 1

0 1
2

]
15.

Both =

[
1 11

2

0 1
4

]
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