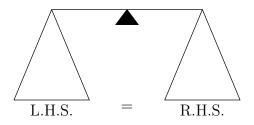
5 Linear Equations

5.1 Solution of a linear Equation with one Variable

A linear equation contains no indices greater than 1 of the variable x (say), e.g. 3x - 5 = 7 is a linear equation but $3x^2 - 5 = 7$ is a non-linear equation.

A linear equation can be represented pictorially as a *straight line* – see Topic 6.

The two sides of an equation are like the two sides of a set of scales in equilibrium. Whatever you do to one side you must do to the other side to preserve the equilibrium.



Examples:

(a) Solve 3x - 5 = 7

Solution:	3x - 5 + 5 = 7 + 5	adding 5 to each side
	3x = 12	simplifying
	$\frac{3x}{3} = \frac{12}{3}$	dividing both sides by 3
	x = 4	simplifying

Check by substituting x = 4 in the original equation

i.e. L.H.S. =
$$3 \times 4 - 5 = 12 - 5$$

= 7
= R.H.S.
 $\therefore x = 4$ is the correct solution.

(b) Solve 4(x-1) + 2 = 2x - 5

Solution
$$4x - 4 + 2 = 2x - 5$$

 $4x - 2 = 2x - 5$
 $4x - 2 + 2 = 2x - 5 + 2$
 $4x = 2x - 3$
 $4x - 2x = 2x - 3 - 2x$
 $2x = -3$
 $\frac{2x}{2} = -\frac{3}{2}$
 $x = -1\frac{1}{2}$

Check: L.H.S. =
$$4\left(-1\frac{1}{2}-1\right)+2$$
 when $x = -1\frac{1}{2}$
= $4\left(-2\frac{1}{2}\right)+2$
= $-10+2$
= -8
R.H.S. = $2\left(-1\frac{1}{2}\right)-5$ when $x = -1\frac{1}{2}$
= $-3-5$
= -8
= L.H.S.
 $\therefore x = -1\frac{1}{2}$ is the correct solution.

Note: While checking is seldom required in a problem, it is a useful exercise especially if you are asked to use the answer in some further problem. So, make a habit of checking.

Exercises 5.1: Solve (i) 3x - 1 = 5(ii) 4x + 2 = 9(iii) 6 - 2x = 1(iv) 5x + 1 = -9(v) 3x + 1 = x - 5(vi) 6x - 1 = 3 - 2x(vii) 2 - 3(x - 2) = x + 4(viii) 5(x - 1) + 1 = 2(x - 2).

In general, a linear equation in one variable has just **one** solution, *i.e.*, a unique solution.

[Examples of linear equations in one variable which do not have a unique solution are

$$3\left(x+\frac{4}{3}\right) = 3x+4$$
 and $3x+4 = 3(x+4)$.

In the first equation, both sides of the equation are identical and so any value of x will satisfy the equation and hence there will be an "infinite number" of solutions. In the second equation, 3x + 4 = 3x + 12, which is a contradiction, so no solution is possible.]

A linear equation in more than one variable will **not** have a unique solution, e.g. 3x + 4y = 2 (see Section 2 below).

5.2 Linear Equations in two Variables

Examples:

(a) 3x + 4y = 0 i.e. $y = -\frac{3}{4}x$ has an "infinite number" of solutions which may be tabulated thus:

x	 -1	0	1	$\frac{4}{3}$	2	
y	 $\frac{3}{4}$	0	$-\frac{3}{4}$	-1	$-1\frac{1}{2}$	• • •

For every value of x, there is a value of y, e.g., $x = \frac{4}{3}$, y = -1.

(b) 3x + 4y = 2 i.e. $y = \frac{1}{2} - \frac{3x}{4}$ has a infinite number of solutions, e.g.

x	 -1	0	1	$\frac{4}{3}$	2	
y	 $1\frac{1}{4}$	$\frac{1}{2}$	$-\frac{1}{4}$	$-\frac{1}{2}$	-1	

Exercise 5.2: Solve 2x - y = 3

5.3 Pair of Linear Equations in two Variables

Suppose we are given the equations 3x + 4y = 2 and x + y = 3. Each equation separately has an infinite number of solutions. Taken together, however, these two equations have a unique solution.

The equations are then said to be solved *simultaneously* i.e., "at the same time".

There are two equivalent methods of solution to this problem.

Example:

Solve	3x + 4y = 2	$\ldots \ldots \ldots (i)$		simultaneous	
	x + y = 3	$\ldots \ldots \ldots (ii)$	ſ	linear equations	

First solution:

$$(ii) \times (4): \quad 4x + 4y = 12 \quad \dots \dots \dots \dots (iii)$$
$$3x + 4y = 2 \quad \dots \dots \dots \dots (i)$$
$$(iii) - (i): \quad x = 10$$

Substitute in (ii):

$$10 + y = 3$$

$$10 + y - 10 = 3 - 10$$

$$y = -7$$

$$\therefore \text{ the unique solution is } \boxed{\begin{array}{c} x = 10 \\ y = -7 \end{array}}$$

Always substitute these values of x and y in (i), (ii) to **check** the correctness of the solution.

Second solution: Write (i), (ii) as

$$y = -\frac{3}{4}x + \frac{1}{2}\dots(i)'$$

 $y = -x + 3\dots(i)'$

(i)', (ii)' give $-\frac{3}{4}x + \frac{1}{2} = -x + 3 (= y)$ which we solve as in Topic 5, Section 1.

$$\begin{aligned} \frac{3}{4}x + \frac{1}{2} - \frac{1}{2} &= -x + 3 - \frac{1}{2} \\ -\frac{3}{4}x &= -x + 2\frac{1}{2} \\ -\frac{3}{4}x + x &= -x + 2\frac{1}{2} + x \\ \frac{1}{4}x &= 2\frac{1}{2} \\ \frac{1}{4}x \times 4 &= 2\frac{1}{2} \times 4 \\ x &= 10 \end{aligned}$$

Substitute for x in (i)': $y = -\frac{3}{4} \times 10 + \frac{1}{2} = -7\frac{1}{2} + \frac{1}{2} = -7$ Substitute for x in (ii)': y = -10 + 3 = -7 \therefore the unique solution is x = 10y = -7

_

[The checking of the solution is inherent in the process.]

Exercises 5.3:
(i) Solve

(a) 2x + 3y = 10, 3x - 2y = -11
(b) 5x - 2y = 1, 2x = 4 - y

(ii) Why do the pairs of equations

(a) x - y = 5, 3x - 3y = 4
(b) x - y = 5, 3x - 3y = 15
not have a unique solution?

5.4 Geometrical Interpretation

The *unique* solution of 2 simultaneous **linear** equations gives the *unique* point of intersection of 2 straight **lines**.

See the next Topic, Graphs of Straight Lines.

5.5 Answers to Exercises

5.1:

- (i) 2 (iii) $2\frac{1}{2}$ (v) -3 (vii) 1
- (ii) $1\frac{3}{4}$ (iv) -2 (vi) $\frac{1}{2}$ (viii) 0

5.2:

$$\begin{cases} x = \dots, -1, 0, 1, 1\frac{1}{2}, 2, \dots \\ y = \dots, -5, -3, -1, 0, 1, \dots \end{cases}$$
 are some solutions.

5.3:

- (i) (a) x = -1, y = 4
 - (b) x = 1, y = 2
- (ii) (a) the two equations are **inconsistent**. (if x y = 5 is true, then $3x 3y = 3(x y) = 3 \times 5 = 15$, not 4)
 - (b) the second equation is exactly 3 times the first equation, i.e., there is only one (independent) equation, i.e., the equations are not **independent**.