2 Elementary Algebra

2.1 Introduction

An algebraic symbol, i.e., a letter of an alphabet, is nothing to worry about.

A letter merely stands for a number, as we have seen in Topic 1.

Elementary Algebra is thus just a generalization of Elementary Arithmetic.

We can use any letters (or symbols) we like. There is nothing special about using the letter x, though it is the most commonly-used letter.

Question: What is meant by, say, 3x?

Answer: $3x = 3 \times x = x + x + x = 3$ lots of x

If x = 5, the value of 3x is $3 \times 5 = 15$

If x = -2, the **value** of 3x is $3 \times (-2) = -6$

Notice that 3x also means $x \times 3 = x3$ (since the order of multiplication doesn't matter, as explained in Topic 1, Section 3). However, we usually write the number (called the *coefficient*) before the letter.

2.2 Addition and Subtraction

Examples:

$$3x + 4x = 7x = 4x + 3x$$

$$4x - 3x = 1x = x$$

$$3x - 3x = 0x = 0$$

$$3y + 4y = 7y = 4y + 3y$$

$$-5x + 7x - 6x = -4x$$

$$1x = x$$

$$0x = 0$$

$$0$$

Note that we can only add and subtract to make the expression simpler when the letters are the same, e.g., 3x + 4x = 7x and 2y + 3y = 5y, but we can't make, say, 3x + 4y any simpler algebraically since x and y are different.

Exercises 2.1: (i) 5x - 3x(ii) 4x - 7x(iii) 3y - 5y(iv) 8t - 7t(v) 3x - 7x + x(vi) 3x - 7y + 2x(vii) 4 - 3x + 2x(viii) 3a + 5b - 3a(ix) -4x + 3x - 8x + 9x(x) 3x - 5w + 4w - 2x - 7 + 3w + 5 - 2w

2.3 Multiplication

Explanation

(i)
$$x^0 = 1$$
, $x^1 = x$, $x^2 = \underbrace{x \times x}_{2 \text{ factors}}$, $x^3 = \underbrace{x \times x \times x}_{3 \text{ factors}}$, $x^4 = \underbrace{x \times x \times x \times x}_{4 \text{ factors}}$

(ii) $3x^2$ means $3 \times x \times x$ **but** $(3x)^2 = (3x) \times (3x) = 3 \times 3 \times x \times x = 9x^2$

- (iii) 5xy means $5 \times x \times y$ (= 5yx also)
- (iv) $7x \times 4y = 7 \times x \times 4 \times y = 28xy$
- $(\mathbf{v}) \ 2ab^2 = 2 \times a \times b \times b \ \mathbf{but} \ (2ab)^2 = 2ab \times 2ab = 2 \times a \times b \times 2 \times a \times b = 4a^2b^2$

(vi)
$$3x^0 = 3 \times x^0 = 3 \times 1 = 3$$
 but $(3x)^0 = 1$

Examples:

$$2(3x) = 6x[= 3x + 3x]$$

$$3(-2x) = -6x$$

$$-2(-4x) = 8x$$

$$-x(-x) = (-x)^{2} = x^{2}$$

$$3x(-2x) = -6x^{2}$$

$$(-2y) \times 3x = -6xy$$

$$3x + 5xy$$

$$4x - 3$$

$$2ab + 3ab^{2}$$
can't be made any simpler

Exercises 2.2: Simplify (= make simpler, if possible) (i) $3 \times t \times z$ (ii) $a \times 4$ (iii) $x \times y \times x \times x$ (iv) 2x(-x)(v) 5xt - xt(vi) -4(2x) + (-3x)3

$$(\mathbf{v}_1) = \mathbf{1}(2\omega) + (-\mathbf{v}_2)$$

- (vii) 3xy + 5 2yx(viii) $(-3x)^2$ (ix) $4x^2y 3xy 7yx^2 + 4$
 - (x) $5x^0$ (xi) Explain why $2xy^2 \neq 2x^2y^2 \neq (2xy)^2$

$\mathbf{2.4}$ Brackets

With brackets proceed here as you did in Elementary Arithmetic, Topic 1, Section 5.

Examples:

$$\begin{array}{rcl} 3(x-1) &=& 3 \times x - 3 \times 1 = 3x - 3 \\ -(x-2) &=& -x+2 & \text{Note that the left hand side implies} & -1 \times (x-2) \\ 3x - 4 - 2(x-2) &=& 3x - 4 - 2x + 4 = 1x + 0 = x \\ x^2 + x + 1 - (x^2 - x + 1) &=& x^2 + x + 1 - x^2 + x - 1 = 2x \end{array}$$

Exercises 2.3:	
(i) $2(x+1)$	
(ii) $-(3-x^2)$	
(iii) $-2(x-3)$	
(iv) $4(x-1) - 3(2x+5)$	
(v) $3(2-5x) + 4(3x+4)$	
(vi) $2(3x-6) - 3(2x-4)$	

2.5 Division

Examples:

$$\frac{x}{x} = 1$$
 if $x \neq 0$ $\frac{6x}{3x} = 2$ $\frac{-2x}{x} = -2$ $\frac{-5x}{-x} = 5$

$$\frac{8y}{2} = 4y \quad \frac{4xy}{2yx} = 2 \quad \frac{6x^2}{x^2} = 6$$

~

Negative indices

$$x^{-1} = \frac{1}{x}$$
 (See also Topic 1, Section 6)

Examples:

$$(2x)^{-1} = \frac{1}{2x}$$

$$(2x)^{-2} = \frac{1}{(2x) \times (2x)} = \frac{1}{4x^2}$$

$$2x^{-2} = 2 \times x^{-2} = 2 \times \frac{1}{x \times x} = \frac{2}{x^2}$$

$$6x(3x)^{-1} = 6x \times \frac{1}{3x} = \frac{6x}{3x} = 2$$

$$(-3x)^{-1}(2x)^{-1} = \frac{1}{-3x} \times \frac{1}{2x} = \frac{1}{-6x^2} = \frac{-1}{6x^2} = -\frac{1}{6x^2}$$

Exercises 2.4:

(i) $\frac{-8x}{2x}$ (ii) $\frac{-15t}{-3t}$ (iii) $\frac{8y}{4}$ (iv) $10x(-5x)^{-1}$ (v) $(-2x)^{-1}4x$

Topic 2 Revision Exercises 2.5:
(i)
$$-7x + 4x - 4x$$

(ii) $2x^2 + 3x^2$
(iii) $3x + 6 - 4x$
(iv) $4x^2 - 2x(-3x) - 5x(2x)$
(v) $5(x - 2) - 4(x - 3)$
(vi) $\frac{-12}{4x}$
(vii) $-20x(-4x)^{-1}$
(viii) $-6y(2y)^{-1} + (-4y)^{-1}(-8y)$

2.6 Answers to Exercises

2.1:

- (iv) t (vii) 4-x (x) x-2(i) 2x(ii) -3x(v) -3x(viii) 5b (vi) 5x - 7y(iii) -2y(ix) 0 2.2: (iv) $-2x^2$ (vii) 5 + xy (x) 5 (i) 3tz(v) 4xt (viii) $9x^2$ (ii) 4*a* (vi) -x (ix) $-3x^2y - 3xy + 4$ (iii) x^3y (xi) We have $2 \times x \times y \times y \neq 2 \times x \times x \times y \times y \neq 4 \times x \times y \times x \times y$ 2.3: (v) -3x + 22(i) 2x + 2(iii) -2x + 6(ii) $-3 + x^2 (= x^2 - 3)$ (iv) -2x - 19(vi) 0 2.4:
- (i) -4 (iii) 2y (v) -2
- (ii) 5 (iv) -2

2.5:

(i) -6x(iii) -x+6(v) x+2(vii) 5(ii) $5x^2$ (iv) 0(vi) $-\frac{3}{x}$ (viii) -1