10 Geometry

Basic facts about fundamental geometrical figures and here below given for reference.

A straight angle is 180°

Vertically opposite angles are equal.

Two angles whose sum is 90° are called complementary angles.

supplementary angles

Two angles whose sum is 180° are called supplementary angles.

Parallel Lines 10.2

Alternate angles c = f, d = e

 $\label{eq:corresponding angles} a = e,\, c = g,\, b = f,\, d = h$

Co-interior angles: c + e = d + f supplementary supplementary

 $= 180^{\circ}$

10.3 Triangles

Sum of the angles of **any** triangle is 180°, $x+y+z=180^{\circ}$

Exterior angle = sum of interior opposite angles, z = x + y

 $\begin{cases} Isosceles \ Triangle \\ Base \ angles \ are \ equal \ and \\ Opposite \ sides \ equal \end{cases}$

 $\begin{cases} Equilateral \ Triangle \\ All \ angles \ = 60^{\circ} \\ All \ sides \ equal \ in \ length \end{cases}$

10.4 Quadrilaterals

 $Parallelogram \begin{cases} Opposite sides equal and parallel \\ Diagonals bisect each other \end{cases}$ In a parallelogram $\begin{cases} there is no axis of symmetry \\ opposite angles are equal \\ adjacent angles are supplementary \end{cases}$

 $Rhombus \begin{cases} Parallelogram with all sides equal \\ Diagonals bisect each other at$ *right angles* $\\ A rhombus has no axis of symmetry \end{cases}$

Rectangle

Square

Angle in a semi-circle is a right angle

Angles on the same arc are equal

Angle at the centre is twice angle at circumference standing on the same arc

In a *cyclic* quadrilateral (i.e., a 4-sided figure with the vertices on a circle),

$$\begin{cases} a+c = 180^{\circ} \\ b+d = 180^{\circ} \\ e = d \end{cases}$$

10.6 Congruent Triangles

Two triangles are *congruent* if they have the same shape and the same size.

For this to happen, one of the following sets A, B, C of 3 criteria

A. Three pairs of sides are equal.

B. Two pairs of sides and the angles between them are equal.

When this happens (for A, B or C) we have a total of 6 pieces of information about equality (3 about equal sides and 3 about equal angles), and so the areas of the two congruent triangles are equal.

If the triangles are **right-angled**, then the 3 criteria of D must be fulfilled.

D. The hypotenuses, one pair of corresponding sides, and the pair of right angles are equal.

Congruent triangles are thus equal in all respects. The symbol \equiv means "is congruent to".

10.7 Similar Triangles

Two triangles are *similar* if they have the same shape.

Two similar triangles are **equiangular**, i.e., angles which correspond are equal.

Consider the similar right-angled triangles drawn, then

$$\frac{4}{5} = \frac{8}{10} = \frac{12}{15} = \dots$$

and similarly for the other ratios of sides (see Topic 12, Section 2).

The symbol ||| is sometimes used for the phrase 'is similar to'.

Clearly, congruence is a special case of similarity, i.e., all congruent triangles are similar, but only some similar triangles are congruent.